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Multiband RF Spectrum Sensing

Spectrum sensing: efficiently determine the frequency content of an

unknown real signal x(t).

0 fmin
· · · fmax

f

←→ x(f) =


...



Assume there are n bands of width B in the partition.
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Classical Spectrum Sensing Receiver Designs
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With ideal components, a linear system: y(f) = Ax(f)

To first order, the receivers have equal energy consumption.
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Compressed Sensing Receivers for Spectrum Sensing

Compressed sensing1: invert

underdetermined y = Ax via

• Structured input x,

• Generic sensor A,

• Convex optimization for

reconstruction.
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x∈Rn
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1: [Candès, Romberg, and Tao 2006; Candes and Tao 2005; Donoho 2006a; Donoho 2006b] 4 / 20



Reconstruction of the Spectrum via Proximal Gradient

A recipe from numerical optimization: solve

minimize
x∈Cn

λ‖x‖1 + 1
2‖y −Ax‖22

via the proximal gradient method:

z(k) ← x(k) − 1
LA
∗(Ax(k) − y)

x(k+1) ← eî arg(z
(k))max{∑i|z

(k)
i |ei − λ

L1,0}

for k = 0, 1, . . . , L = ‖A‖2, x(0) = 0 (say).
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Reconstruction Algorithms—Numerical Optimization

Characteristics of numerical optimization approaches to the recovery

problem:

• Targeted towards general

classes of problems.

• Accompanied by worst-case

performance guarantees.

• Hand-designed using known

models for the application.

inf f
(smooth)

+ g
(convex)

= h

h(x(k))−h(x?) = O(1/k)

x sparse =⇒ g = ‖ · ‖1
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Reconstruction Algorithms—Desiderata

On the other hand, for spectrum sensing, we would like an

algorithm that satisfies:

• Performance-optimized for a specific

subclass of sparse recovery problems.

• Able to incorporate hard constraints on

computational resources.

• Adaptive to deviations from the nominal

design in a model-free manner.
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Reconstruction Algorithms—Neural Networks

A neural network consists of:

1. An integer d ≥ 1 (the depth)

2. Euclidean spaces Rni , i = 0, . . . , d

3. Affine maps Li : Rni−1 → Rni , i ∈ [d]

4. “Nonlinearities” σi : Rni → Rni , i ∈ [d]

Iteratively: define

f (k) =

σk(Lk(f (k−1))) k ≥ 1

In0 k = 0

Then y = f (d)(x).

x

L1(x) = W 1x+ b1

σ1(x) = max{x,0}

...

Ld(x) = W dx+ bd

σd(x) = x

y

For spectrum sensing: which architecture do we choose?
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Connection to Proximal Gradient

Recall the iteration

z(k) ← x(k) − 1
LA
∗(Ax(k) − y)

x(k+1) ← eî arg(z
(k))max{∑i|z

(k)
i |ei − λ

L1,0}.

Define

pλ(x) = eî arg(x)max{
∑
i

|xi|ei − λ
L1,0}.

Then after rearranging:

x(k+1) ← pλ

(
1
LA
∗y + (I − 1

LA
∗A)x(k)

)
,

which has the form of a neural network.
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Learned Optimization Algorithms for Spectrum Sensing

Truncate the network, and learn its

parameters using data. The result satisfies:

1. Optimized for a specific computational

budget and sparse inverse problem.

2. Adaptive to nonidealities via the training

procedure, without explicit modeling.

3. Leverages available prior information via

the network topology and initializations.

This approach is called LISTA [Gregor and

LeCun 2010].
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Learned Optimization Algorithms

Other works on learned optimization algorithms:

• (Near-)SoA in super-resolution [Wang et al. 2015], voice

identification [Sprechmann, A. Bronstein, et al. 2013]

• Additional structural priors [Sprechmann, A. M. Bronstein, and

Sapiro 2015]

• Other base recovery algorithms: AMP [Borgerding, Schniter,

and Rangan 2016], SBL [He, Xin, and Wipf 2017]

• Co-optimization of nonlinearities and weights [Kamilov and

Mansour 2015; Mahapatra, Mukherjee, and Seelamantula 2017]
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Learned Optimization Training Procedure

Reparametrize the network. Then perform

empirical risk minimization

minimize
W ,S

1

2

T∑
i=1

∥∥∥x(d)(yi)− xi

∥∥∥2
2

using

1. a dataset {yi,xi}Ti=1

2. initializations based on the design matrix Ã

to obtain (W ?,S?).

We desire that:

1. T is not too large

2. Recovery guarantees associated with Ã are

associated with (W ?,S?)
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LISTA for Multiband Spectrum Sensing - Training Set

0 fmin
· · · fmax

f

0 fmin
· · · fmax

f

. . .

0 fmin
· · · fmax

f

Proposed dataset: measurements y and corresponding spectra x

for each possible 1-sparse x(t), at moderate power.

• Compare to
dm/ logne∑

k=1

(
n

k

)
signals for exhaustive training.

Test on arbitrary k-sparse signals with equal support powers.
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Experiments: Simulation Setup
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We simulate the DRF2IC receiver [Haque et al. 2018], and

A ∈ C18×63.

We consider two realistic receiver nonidealities:

1. IQ downconversion frequency-independent mismatch

2. PRBS fractional phase offsets

Task: support recovery; evaluation metric: PD and PFA
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Experiments: Detection vs. SNR
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Experiments: Detection vs. Sparsity
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Experiments: Test Set NMSE vs. Training Parameters
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Conclusions

1. Learned optimization-based signal recovery methodology was

argued to be ideal for interferer detection in CS-based

spectrum sensing receivers.

2. An efficient training protocol was developed and evaluated in

the equal-power and linearly-impaired regime.

3. Extensions to more challenging signal models and receiver

impairments will require additional innovations.
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IRE Selection—Proximal Gradient (MMV)

A recipe from numerical optimization: solve

minimize
X∈Cn×p

λ

n∑
i=1

‖xi‖2 + 1
2‖Y −AX‖2F

via the proximal gradient method :

Z(k) ←X(k) − 1
LA
∗(AX(k) − Y )

X(k+1) ← eî arg(Z
(k))max{|Z(k)| − λ

L

n∑
i=1

‖xi‖ei ⊗ 1p,0}

for k = 1, 2, . . . , L = ‖A‖2, X(0) = 0 (say).



Top-Level Experiment Parameters

All experiments focus on the MMV problem

1. fmin = 2.57 GHz, fmax = 3.83 GHz

2. Sampling frequency set for an OSR of 8

3. DRF2IC run with 2 physical branches and expansion factor of 9

4. m = 18, n = 63, p = 80

5. IQ imbalance of 3 dB, 30◦

6. PN sequence phase misalignment of 6/8

LISTA parameters: d = 12, T = 63, λ = 0.1. Data is labeled via a

pseudoinverse on the known support.

Support recovery details:

1. OMP: terminate after k + 2 iterations

2. `1 and LISTA: compute the average bin power in the predicted

signal, and declare the top k + 2 bins to be active



First Experiment Details

1. Number of samples per point: 200

2. Sparsity levels: 3, 6

3. Samples are uniformly random k-sparse signals, plus

independent noise

4. Noise power calculated over the entire band

5. Orthogonal matching pursuit run with only the

previously-mentioned stopping criterion

6. `1 implementation is an accelerated proximal gradient algorithm

7. Calibrated traces run the corresponding algorithms on

unimpaired data



Second Experiment Details

1. Number of samples per point: 500

2. SNR is fixed at 20 dB

3. Signal generation and algorithms as in the previous experiment



Third Experiment Details

1. Number of samples per point: 500

2. NMSE calculated similarly to the LISTA training objective (just

with normalization)

3. SNR is fixed at 20 dB, sparsity is fixed at k = 6

4. Signal generation as in the previous experiment


